

BS in Artificial Intelligence Program

Alfaisal University, College of Engineering & Advanced Computing

Effective: Fall 2025

Approved: April 2025

Curriculum Structure and Study Plan

The Artificial Intelligence program curriculum is composed of **133** Credit Hours (CRHs) divided as follows:

I. General Education Requirements (30 CRHs)

- 1. Mathematics & Statistics (12 CRHs)
- 2. Basic Sciences (4 CRHs)
- 3. Humanities (14 CRHs)

II. Core Requirements (103 CRHs)

- 1. Software Engineering Courses (87 CRHs)
- 2. College of Engineering & Advanced Computing Courses (4 CRHs)
- 3. Technical Electives (12 CRHs)
- 4. Summer Internship (0 CRHs)

I. General Education Requirements (30 CRHs)

1. Mathematics & Statistics (12 CRHs)

		Credi	it Hours	(CRH	(s)	Duo Dogwigita	Co-
Course Code	Course-Title	Total- CRHs	Lect.	Lab	Tut	Pre-Requisite Course Code	Requisite Course Code
MAT 101	Calculus I	3	3	0	1		
MAT 112	Calculus II	3	3	0	0	MAT 101	
MAT 211	Calculus III	3	3	0	0	MAT 112	
MAT 212	Linear Algebra	3	3	0	0	MAT 112	

2. Basic Sciences (4 CRHs)

_		Credit Hours (CRHs)		Pre-Requisite	Co-		
Course Code	Course-Title	Total- CRHs	Lect	Lab	Tut	Course Code	Requisite Course Code
PHU 103	Mechanics and Waves for Engineers	3	3	0	1		MAT 101, PHU 103L
PHU 103 L	Mechanics and Waves for Engineers Lab	1	0	2	0		PHU 103

3. Humanities (14 CRHs)

		Credit Hours (CRHs)				Due Deguisite	Co-
Course Code	Course-Title Total-CRHs Lect Lab Tut		Pre-Requisite Course Code	Requisite Course Code			
ENG 101	University Writing	3	3	0	0		
ENG 222	Technical Writing	3	3	0	0	ENG 101	
ISL 101	Islamic Studies I	2	2	0	0		
ARB 101	Arabic Language and Literature I	2	2	0	0		
GE	General Education Elective I	2	2	0	0		
GE	General Education Elective II	2	2	0	0		

II. Core Requirements (103 CRHs)

1. Software Engineering Courses (87 CRHs)

		Cre	dit Hou	rs (CR	Hs)		Co-
Course Code	Course-Title	Tot al- CR Hs	Lect	Lab	Tut	Pre-Requisite Course Code	Requisite Course Code
SE 100	Programming for Engineers	3	3	0	0		SE 100L
SE 100 L	Programming for Engineers Lab	1	0	2	0		SE 100
SE 120	Object-Oriented Programming I	3	3	0	0	SE 100	SE 120L
SE 120 L	Object-Oriented Programming I Lab	1	0	2	0		SE 120
SE 151	Discrete Mathematics	3	3	0	0	SE 100	
DSE 200	Introduction to Data Science	3	3	0	0	SE 120	DSE 212
SE 201	Introduction to Software Engineering	3	3	0	0	SE 120	
DSE 201	Data Visualization	3	3	0	0	DSE 200	
DSE 212	Probability and Statistics for Engineers	3	3	0	0	MAT 112	
AI 213	Introduction to Artificial Intelligence	3	3	0	0	SE 215	
SE 215	Data Structures	3	3	0	0	SE 120	SE 215L
SE 215 L	Data Structures Lab	1	0	2	0		SE 215
SE 239	Computer Networks	3	3	0	0	EE 210	
SE 252	Database Management Systems	3	3	0	0	SE 215	SE 252L
SE 252 L	Database Management Systems Lab	1	0	2	0		SE 252
SE 254	Operating Systems	3	3	0	0	SE 215	SE 254L
SE 254 L	Operating Systems Lab	1	0	2	0		SE 254
SE 301	Analysis of Algorithms	3	3	0	0	SE 215	
SE 316	Application Development	3	3	0	0	SE 215	

Artificial Intelligence - CoE & Advanced Computing

AI 317	Computer Vision	3	3	0	0	SE 215	
AI 320	Data Mining	3	3	0	0	SE 215, DSE 201	
CSE 330	Introduction to Cybersecurity	3	3	0	0	SE 239	SE 254
AI 346	Introduction to Big Data	3	3	0	0	SE 252, SE 254	
AI 347	Introduction to Machine Learning	3	3	0	0	SE 252, SE 254	
AI 360	Agent Based Systems	3	3	0	0	SE 215, SE 239	
AI 361	Human Centered AI	3	3	0	0	AI 213	
SE 400	Theory of Computation	3	3	0	0	SE 151, AI 347	
AI 455	Generative AI	3	3	0	0	AI 347	
AI 475	Game Theory	3	3	0	0	SE 301	
AI 480	Natural Language Processing	3	3	0	0	SE 400	
SE 481	Ethical and Professional Development	1	1	0	0	AI 495	
AI 495	Capstone Project I	3	0	6	0	AI 346, AI 347, AI 360, AI 361	
AI 496	Capstone Project II	3	0	6	0	AI 495	

2. College of Engineering & Advanced Computing Courses (4 CRHs)

		Credi	it Hours	(CRH	s)		Co-
Course Code	Course-Title	Total- CRHs	Lect	Lab	Tut	Pre-Requisite Course Code	Requisite Course Code
EE 210	Digital Logic Design	3	0	0	0	PHU 103	EE 210L
EE 210 L	Digital Logic Design Lab	1	0	2	0		EE 210

3. Technical Electives (12 CRHs) Select from the following courses:

		Credi	it Hours	(CRH	(s)	Due Descripite	Co- Requisite
Course Code	Course-Title	Total- CRHs	Lect	Lab	Tut	Pre-Requisite Course Code	Course Code
AI 362	Technical Elective 1 (Product Management for AI)	3	3	0	0	AI 213	
AI 471	Technical Elective 2 (Deep and Reinforcement Learning)	3	3	0	0	AI 347	
AI 472	Technical Elective 3 (Expert Systems)	3	3	0	0	AI 213	
AI 483	Technical Elective 4 (AI in Robotics)	3	3	0	0	AI 213	

4. Summer Internship (0 CRHs)

Course Code	Course-Title	Credit Hours (CRHs)	Pre-Requisite Course Code	Co- Requisite Course Code
AI 390	Software Engineering Summer Internship	0	Department approval	

Typical Study Plan- Artificial Intelligence Program

4-Year Curriculum: 133 Credit Hours Total

Each course below follows the following format:

Course code, Course Title, and Course Credit Hours (Lecture contact hours – Lab contact hours – Tutorial contact hours)

		1 st Year	
Fall	Course Code	Course-Title	CRHs
	SE 100	Programming for Engineers	3 (3-0-0)
	SE 100 L	Programming for Engineers Lab	1 (0-2-0)
	MAT 101	Calculus I	3 (3-0-2)
	PHU 103	Mechanics and Waves for Engineers	3 (3-0-1)
	PHU 103 L	Mechanics and Waves for Engineers Lab	1 (0-2-0)
	ENG 101	University Writing	3 (3-0-0)
	ISL 101	Islamic Studies I	2 (2-0-0)
	GE	General Education Elective I	2 (2-0-0)
		Total	18
Spring	Course Code	Course-Title	CRHs
	SE 120	Object-Oriented Programming I	3 (3-0-0)
	SE 120 L	Object-Oriented Programming I Lab	1 (0-2-0)
	SE 151	Discrete Mathematics	3 (3-0-0)
	MAT 112	Calculus II	3 (3-0-2)
	EE 210	Digital Logic Design	3 (3-0-0)
	EE 210 EE 210 L	Digital Logic Design Lab	3 (3-0-0) 1 (0-2-0)
			` ′

	2^{nd} Year						
Fall	Course Code	Course-Title	CRHs				
	DSE 200	Introduction to Data Science	3 (3-0-0)				
	DSE 212	Probability and Statistics for Engineers	3 (3-0-0)				
	SE 215	Data Structures	3 (3-0-0)				
	SE 215 L	Data Structures Lab	1 (0-2-0)				
	SE 239	Computer Networks	3 (3-0-0)				
	MAT 211	Calculus III	3 (3-0-0)				
	MAT 212	Linear Algebra	3 (3-0-0)				
		Total	19				
Spring	Course Code	Course-Title	CRHs				
	SE 252	Database Management Systems	3 (3-0-0)				
	SE 252 L	Database Management Systems Lab	1 (0-2-0)				
	SE 254	Operating Systems	3 (3-0-0)				
	SE 254 L	Operating Systems Lab	1 (0-2-0)				
	DSE 201	Data Visualization	3 (3-0-0)				
	AI 213	Introduction to Artificial Intelligence	3 (3-0-0)				
	CSE 330	Introduction to Cybersecurity	3 (3-0-0)				
		Total	17				

	3 rd Year						
Fall	Course Code	Course-Title	CRHs				
	SE 201	Introduction to Software Engineering	3 (3-0-0)				
	SE 301	Analysis of Algorithms	3 (3-0-0)				
	SE 316	Application Development	3 (3-0-0)				
	AI 317	Computer Vision	3 (3-0-0)				
	AI 320	Data Mining	3 (3-0-0)				
	ARB 101	Arabic Language and Literature I	2 (2-0-0)				
	_	Total	17				
Spring	Course Code	Course-Title	CRHs				
	AI 346	Introduction to Big Data	3 (3-0-0)				
	AI 347	Introduction to Machine Learning	3 (3-0-0)				
	AI 360	Agent Based Systems	3 (3-0-0)				
	AI 361	Human Centered AI	3 (3-0-0)				
	AI	Technical Elective 1	3 (3-0-0)				
	•		15				

Summer	Course Code	Course-Title	CRHs
	AI 390	Internship	0
		Total	0

4 th Year			
Fall	Course Code	Course-Title	CRHs
	SE 400	Theory of Computation	3 (3-0-0)
	AI 455	Generative AI	3 (3-0-0)
	AI 475	Game Theory	3 (3-0-0)
	AI	Technical Elective 2	3 (3-0-0)
	AI 495	Software Engineering Capstone Project I	3 (0-6-0)
Total			15
Spring	Course Code	Course-Title	CRHs
	AI 480	Natural Language Processing	3 (3-0-0)
	SE 481	Ethics and Professional Development	1 (3-0-0)
	AI	Technical Elective 3	3 (3-0-0)
	AI	Technical Elective 4	3 (3-0-0)
	AI 496	Software Engineering Capstone Project II	3 (0-6-0)
	GE	General Education Elective II	2 (2-0-0)
Total			15

Course Descriptions

In this section, we give brief descriptions of courses in the Artificial Intelligence program. Each course below follows the following format:

Course code: Course Title Course credit hours (Lecture contact hours – Lab contact hours – Tutorial contact hours)

Course Description

Prerequisite(s)

Co-requisites

Core Courses

SE 100: Programming for Engineers

3 (3-0-0)

The course introduces the students to basic notions of computers and computing and then introduces them to programming starting from abstract ways like flowcharts and pseudocode and finally using a typical programming language. The students will be introduced to the basic concepts of data types and structures, operators, and the different ways of data storage, manipulation, and representation.

Emphasis is on problem-solving and structured program design methodologies.

Prerequisite(s): None Co-requisites: SE 100L

SE 100 L: Programming for Engineers Lab

1 (0-2-0)

This course constitutes the lab component of the Programming for Engineer course (SE 100). The purpose of this lab is to provide hands-on training on programming concepts, technologies and techniques introduced during lectures.

Prerequisite(s): None Co-requisites: SE 100

SE 120: Object-Oriented Programming I

3 (3-0-0)

After completing this course, students will be equipped with the necessary skills and tools to write programs in Java based on a procedural and object-oriented approach. Topics of focus will include basic Java programming, conditional statements, strings, iteration, methods, arrays, creating classes, encapsulation, inheritance and polymorphism, abstract classes, packages, principles of object-oriented design, as well as exceptions and interfaces.

Prerequisite(s): SE 100 Co-requisites: SE 120L

SE 120 L: Object-Oriented Programming I Lab

1 (0-2-0)

This course constitutes the lab component of the Object-Oriented Programming I course (SE 120). The purpose of this lab is to provide hands-on training on the basics of Java and advanced object-oriented programming. Topics covered include data types and operators, logical expressions, control structures, methods, arrays, inheritance; polymorphism; abstract classes and interfaces. be covered.

Prerequisite(s): None Co-requisites: SE 120

SE 151: Discrete Structures for Software Engineers

3 (3-0-0)

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): SE 100

DSE 200: Introduction to Data Science

3 (3-0-0)

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): SE 120 Co-requisites: DSE 212

DSE 201: Data Visualization

3 (3-0-0)

This course covers the mathematical elements of computer science including formal logic, propositional logic, predicate logic, logic in mathematics, sets, functions and relations, recursive thinking, mathematical induction, counting, combinatorics, algorithms, matrices, graphs, trees, and Boolean logic. Students will learn to recognize and express mathematical ideas graphically, numerically, symbolically, and in writing.

Prerequisite(s): DSE 200

SE 201: Introduction to Software Engineering

3 (3-0-0)

This course is designed to present students with several principles relevant to Software Engineering. Students will gain insights into various software process models throughout the course. The curriculum strongly emphasizes the agile software development approach, highlighting the importance of adaptability and collaborative teamwork. Students will acquire knowledge and skills in requirements engineering. The course covers systems modeling and project management strategies. It addresses the value of software reuse and introduces students to human computer interaction and software testing. The final segment of the course focuses on configuration management.

Prerequisite(s): SE 120

DSE 212: Probability and Statistics for Engineers

3 (3-0-0)

The course is designed to teach students the basics of probability and statistics as used in engineering and the sciences. The course covers introduction to probability theory, random variables, statistics, and regression.

Prerequisite(s): MAT 112

AI 213: Introduction to Artificial Intelligence

3 (3-0-0)

This course introduces students to the fundamental concepts, techniques, and tools used in artificial intelligence (AI). Topics include perception, reasoning, learning, and search algorithms (informed and uninformed). Students will gain skills in applying AI techniques to real-world problems.

Prerequisite(s): SE 215

SE 215: Algorithms and Data Structures

3 (3-0-0)

The course involves the study of important data structures and sorting methods commonly encountered in object-oriented software engineering. It covers the design, performance analysis, and implementation of the related algorithms, stressing their practical use and performance.

Prerequisite(s): SE 120 Co-requisites: SE 215L

SE 215 L: Algorithms and Data Structures Lab

1 (0-2-0)

Survey of important computer algorithms and related data structures used in object-oriented software engineering. Design, performance analysis and implementation of such algorithms, stressing their practical use and performance certification of large software applications. Understand how to "seal" designs to guarantee performance goals and ensure that all error conditions are caught. Laboratory experiments dealing with Algorithms and Data Structures.

Prerequisite(s): None Co-requisites: SE 215

SE 239: Computer Networks

3 (3-0-0)

The course teaches the fundamental concepts of communication networks and is concerned specifically with network architectures and protocols. The objective of the course is to allow students to develop a thorough understanding of the architectures of networks and the basic principles and protocols that allow the transmission of data over networks.

Prerequisite(s): EE 210

SE 252: Database Management Systems

3 (3-0-0)

The focus is to teach database fundamentals required in the development and evolution of most software applications by providing a basic introduction to the principles of relational database management systems such as Entity-Relationship approach to data modeling, relational model of database management systems and the use of query languages.

Prerequisite(s): SE 215 Co-requisites: SE 252 L

SE 252 L: Database Management Systems Lab

1 (0-2-0)

Laboratory experiments dealing with database management systems.

Prerequisite(s): None Co-requisites: SE 252

SE 254: Operating Systems

3 (3-0-0)

Theory and construction of operating systems, including real-time and embedded systems aspect from an engineering point of view, stressing performance measurement and metrics. Quality of Service issues leading to certification that an operating system will satisfy hard real-time constraints.

Prerequisite(s): SE 215 Co-requisites: SE 254 L

SE 254 L: Operating Systems Lab

1 (0-2-0)

Laboratory experiments dealing with Operating Systems.

Prerequisite(s): None Co-requisites: SE 254

SE 301: Analysis of Algorithms

3 (3-0-0)

This course examines the design and analyses algorithms with an emphasis on their application in real world environments. Topics include time complexity, space complexity, and optimization strategies for various algorithms. Students will gain experience with sorting, searching, and graph algorithms, as well as dynamic programming techniques. Special focus will be placed on algorithmic problem-solving in real world environments.

Prerequisite(s): SE 215

SE 316: Application Development

3 (3-0-0)

This course covers the principles of applications deployed on different platforms such as mobiles, web, and cloud. Students will explore different development environments, and understand concepts from memory management, user interface design, GPS, and motion sensing. Multiple programming languages will be explored such as markup languages (e.g., XHTML, XML), scripting languages (e.g., JavaScript, PHP, Ruby), Ajax, web services, and database integration (e.g., MySQL). Through project-based learning, students will develop professional-quality applications for real-world deployment. Prerequisite(s): SE 215

AI 317: Computer Vision

3 (3-0-0)

This course explores the fundamental techniques and algorithms in Computer Vision, focusing on image processing, object detection, feature extraction, and pattern recognition. Students will learn to develop applications that enable computers to analyse and understand visual data from the real world. Prerequisite(s): SE 215

AI 320: Data Mining 3 (3-0-0)

This course introduces students to the fundamentals of Data Mining, focusing on techniques used to extract patterns and knowledge from large datasets. This course covers foundational data mining techniques such as association rule mining, clustering, and classification. Emphasis is placed on understanding the theoretical concepts behind these methods while applying them to practical scenarios. Students will explore tools and libraries used for data mining tasks and tackle projects that simulate real-world applications.

Prerequisite(s): SE 215, DSE 201

CSE 330: Introduction to Cybersecurity

3 (3-0-0)

This course provides an overview of core cybersecurity concepts, emphasizing the fundamental principles, tools, and procedures used to secure information systems. Students will employ the CIA triad as a guiding framework, explore prevalent threats, and examine various information security solutions. The course focuses on security and risk management, business impact analysis (BIA), asset security, vulnerabilities, threats and countermeasures, identity and authentication management, incident response and BCP/DRP, as well as key compliance and regulatory issues. By the end of the course, students will have broad, practical knowledge of cybersecurity, including the ability to identify security risks, implement effective defensive measures, and approach cybersecurity challenges with strategic thinking.

Prerequisite(s): SE 239 Co-requisites: SE 254

AI 346: Introduction to Big Data

3 (3-0-0)

In this course the students will learn the Big Data platform and data governance to efficiently store and manage massive amounts of data. In addition, they will learn Big Data architecture, such as Hadoop, Map Reduce, Hbase, Big SQL and BigSheets. Students will use tools to capture, store and analyse structured and unstructured data.

Prerequisite(s): SE 252, SE 254

AI 347: Introduction to Machine Learning

3 (3-0-0)

This course introduces machine learning with a practical approach covering some of the most common learning models, algorithms, tools, and techniques. From supervised learning, it covers linear regression, logistic regression, and neural networks. From unsupervised learning, it covers Kmeans clustering, dimensionality reduction (principal component analysis), and anomaly detection. The course also discusses practical aspects considered when applying machine learning: data visualization, model selection, flow, model evaluation (testing, validation, overfitting, underfitting, bias, variance), regularization, and large-scale machine learning.

Prerequisite(s): SE 252, SE 254

AI 360: Agent Based Systems

3 (3-0-0)

This course introduces machine learning with a practical approach covering some of the most common learning models, algorithms, tools, and techniques. From supervised learning, it covers linear regression, logistic regression, and neural networks. From unsupervised learning, it covers Kmeans clustering, dimensionality reduction (principal component analysis), and anomaly detection. The course also discusses practical aspects considered when applying machine learning: data visualization, model selection, flow, model evaluation (testing, validation, overfitting, underfitting, bias, variance), regularization, and large-scale machine learning.

Prerequisite(s): SE 215, SE 239

AI 361: Human-Centered AI

3 (3-0-0)

This course explores the intersection of AI and human interaction, focusing on ensuring that artificial intelligence remains under human control. It emphasizes designing AI systems that meet human needs, operate transparently, deliver fair and equitable outcomes, and respect privacy.

Prerequisite(s): AI 213

AI 390: Software Engineering Summer Internship

(0 CRHs)

An internship is an important aspect of the AI curriculum that provides the student with hands-on experience and a good sense of what an actual job in an organization will be like. Students are required to join an IT department in a government or private organization for a summer period of at least 8 weeks in the last summer prior to student graduation. Students should be able to relate the internship experience to the knowledge that he or she has gained through the AI program courses.

Prerequisite(s): Department approval

SE 400: Theory of Computation

3 (3-0-0)

This course introduces fundamental concepts in the theory of computation. Students will be introduced to formal languages, automata, computability and computational complexity. These include finite automatons, Turing machines, grammars, decidable problems, reductive procedures and different kinds of computational problems. The course aims to explore these theoretical concepts to apply on practical issues of interest to software engineering, data science, and AI, for instance, natural language processing, algorithmic development and evaluation of computational efficiency. By the end of this course, students will be able to assess the performance bounds of computing models and their applicability towards modern computing problems.

Prerequisite(s): SE 151, AI 347

AI 455: Generative AI 3 (3-0-0)

This course focuses on the principles and applications of generative AI, including Generative Adversarial Networks (GANs) and Large Language Models (LLMs). In this course, students explore generative AI essentials, how to ethically use artificial intelligence, its implications for authorship, and what regulations for generative AI could look like. The course emphasizes both the theoretical foundations and practical applications of generative models in areas like content generation, and AI-driven design.

Prerequisite(s): AI 347

AI 475: Game Theory

Game theory underpins several important recent advancements in AI such as multi-agent reinforcement learning and generative adversarial networks. Applications within computer science include the use of games in automated verification & model checking to model computing systems in an unknown and possibly adverse environment. In AI, games are applied to the analysis of multiagent systems. Recently, with the advent of the internet and e-commerce, many game theoretic questions in the interplay between economics & computing have received extensive attention. These include electronic auctions, & more generally mechanism design questions (inverse game theory) related to finding incentive structures for cooperation between independent entities on the internet. The course introduces students to the theory of non-cooperative games covering both its economic and algorithmic aspects. Topics that will be covered include equilibria, their existence and quality, equilibrium learning and computation.

Prerequisite(s): SE 301

AI 480: Natural Language Processing

3 (3-0-0)

3 (3-0-0)

This course introduces the concepts and techniques used in natural language processing (NLP), including text preprocessing, word embeddings, and language models. Students will explore applications such as sentiment analysis, machine translation, and chatbot development. Projects focus on using modern NLP libraries and frameworks to solve practical challenges.

Prerequisite(s): SE 400

SE 481: Ethics for Engineers

1 (1-0-0)

This course will explore the effects of technology on society. Especially the ethical questions that arise when technology interacts with humans. Topics will include secrecy of data, privacy issues, legal obligations, and protecting the society by limiting the reach of technology.

Prerequisite(s): AI 495

AI 495: Capstone Project I

3 (0-6-0)

This course is the first part of a two-semester senior-year capstone project for AI students. It aims to complement theoretical knowledge with in-depth, hands-on experience in AI project development. Students will work in teams on projects relevant to the AI sector, focusing on tasks such as requirement analysis, system architecture, design, implementation, testing, validation, project management, and maintenance. In this part, students will develop a project plan, provide a software requirement specification document, and create a high-level design for an AI-driven application or system. Prerequisite(s): AI 346, AI 347, AI 360, AI 361

AI 496: Capstone Project II

3 (0-6-0)

Building on the groundwork laid in AI 495, this course focuses on implementing and completing the capstone project. Students will execute their proposed solutions, including AI model development and performance evaluation. Teams will utilize industry-standard tools and techniques to develop a functional prototype or system. The course culminates with a comprehensive project report and a formal presentation to faculty and industry stakeholders, demonstrating the ability to tackle complex, real-world problems with AI-enabled strategies. Emphasis is placed on teamwork, project management, and effective communication of findings. Student teams are required to deliver the executable code, submit a final report, and present and demonstrate their AI solution, showcasing its functionality and impact. Prerequisite(s): AI 495

Technical Elective Courses

AI 362: Technical Elective 1 (Product Management for AI)

3 (3-0-0)

This course introduces the principles of AI product management, focusing on developing, launching, and managing AI-driven products. Students will learn about the product lifecycle, from concept to market launch, while addressing key challenges such as user needs, ethics, and scalability in AI applications. Prerequisite(s): AI 213

AI 471: Technical Elective 2 (Deep and Reinforcement Learning)

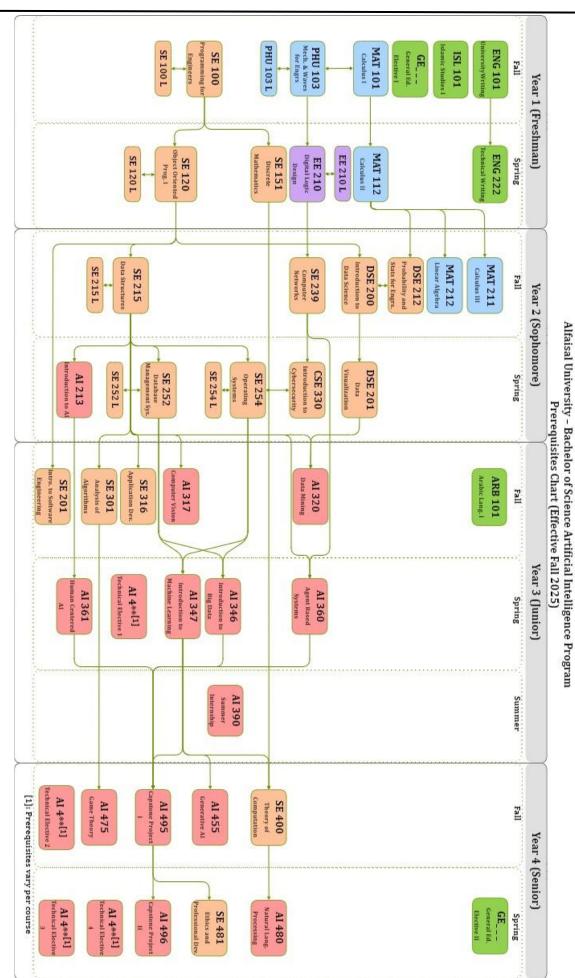
3 (3-0-0)

This course introduces Deep Reinforcement Learning (DRL), an emerging field combining deep learning and reinforcement learning to create intelligent agents that learn through trial and error. Students will learn the fundamentals of DRL, including core concepts, algorithms, and architectures used to build and train deep reinforcement learning models. The course also covers neural networks like CNNs and RNNs. Students will gain hands-on experience applying these techniques to real-world AI problems. Prerequisite(s): AI 347

AI 472: Technical Elective 3 (Expert Systems)

3 (3-0-0)

This course introduces students to expert systems in general and to rule-based systems in specific. Students learn how to build a rule-based expert system in a variety of application areas. They also learn advanced programming techniques which include topics of inexact reasoning, intelligent database management methods, and how to develop a community of expert systems. Students are also given the opportunity to demonstrate their understanding of the technology by building a rule-based expert system that addresses a real-world problem.


Prerequisite(s): AI 213

AI 483: Technical Elective 4 (AI in Robotics)

3 (3-0-0)

This course focuses on integrating AI with robotics to develop intelligent autonomous systems. Students will study perception, decision-making, motion planning, and control using AI techniques like computer vision, reinforcement learning, and path planning algorithms. The course emphasizes practical applications in robotic systems, including autonomous navigation, object manipulation, and human-robot interaction.

Prerequisite(s): AI 213

